Friday, November 19, 2010

Lab #10 Data Entry

Stefanie Wieschalla
Geog 206

Part1:
1. Each map has a different level of map generalization. However, one would have more problems with feature generalization and omission in small scale maps because they cover bigger areas and hence show less detail.
2. Snapping, in the context of digitizing can be understood as a process that automatically sets nearby points to have the same coordinates. It further relies on snap distance, which can be interpreted as a minimum distance between features. The practice of snapping is important given that it when used properly, it reduces the number of undershoots and overshoots. Hence closed polygons or intersecting lines are easier to digitize accurately and efficiently.
 3. COGO is short for coordinate geometry, a process that may be used to calculate station coordinates that are part of surveys or otherwise known as survey coordinates. It generally consists of a starting point, a station, and a list of directions, bearings, and distances to subsequent stations. The COGO defines a connected set of points from the starting station to each subsequent station.  

Part 2:
Exercise A
Q. The feature class type for Springs is point.

Exercise B
Parcel Editing Screen Shot




Monday, November 1, 2010

Lap #9b More Practice with Spatial Analysis

Stefanie Wieschalla
Geog 206


 
1. The state of Iowa contains of 99 counties.
2. Fulton contains the largest number of people in Georgia, as of the year 2001.
3. There are 39 cities, with populations between 10,000 and 49,000, that are located within the State of Washington.
4. The interstates in LA County are all together 4105.56 miles long.
5.




6. Within LA County there lie 4115.74855 acres of urban area.
7. There are 522 zip codes that have their centroid in LA County.
8.

 
9. There are two Native American Indian Reservations, which are Kitigan Zibi Indian Reserve and Akwesasne Indian Reserve 15 that lie within 75 miles of the City of Thurso, Canada.
10.




Thursday, October 28, 2010

Lap #9a Introduction to Spatial Analysis

Stefanie Wieschalla
Geog 206

Part 1:
1. A spatial scope is the size or area of the input data utilized to find out the values at output locations. There are three types, which are local, neighborhood, or global operations. All reflect somehow the extent of the source area used to reveal the value at a given output site. Local operations use only the data at one input location, where neighborhood operations use data both at input location as well as nearby locations to determine output value. Yet, global operations utilize data values from the entire layer to determine each output value.
2. The two types of Algebra used in queries are set algebra and Boolean algebra. The difference exists in the fact that set algebra uses the operations less than, greater than, equal to, and not equal to, where Boolean algebra utilizes the conditions or, and, and not to select features. Selection conditions are often formalized using set algebra given that they meet one to several conditions or criteria. For example, two conditions are applied and the features that satisfy both conditions are included in the selected set like growing fruits as well as vegetables is taken place in northern plus southern California. In contrast, Boolean algebra is most often used to combine set algebra conditions and create compound spatial selections. A good example would be the expression using a Boolean AND, with two arguments for the expression. Thus, features are selected if they satisfy both arguments as for example income is higher than 5,000 a month and they are living in a house.
3. The different types of spatial selection operations are first adjacency, which are used to identify features that “touch” other features and second containment, which identifies all features that contain or surround a set of target features.

Part2:
4. Yes, there is a feature dataset called Los Angeles.
5. There are four feature classes present named: PtDumeQuad, Vegetation, Wetlands and Wetlands_Project

Part3:
6. There exist 10896 features in the vegetation feature class.
7. Now, after running the dissolve operation, there exist only nine features in the new VegCoc feature class.
8. In this new VegCov_Clip feature class there exist now 8 features.

Part4:
9. There were 404 wetland features selected in the attribute table.
10. There were 123 features selected.
11.

Friday, October 22, 2010

Lab #8 Database Management & Queries

Stefanie Wieschalla
Geog 206

Part 1:
1. The primary functions of a database management system is organizing and manipulating data. This includes data independence, which makes it possible to make changes in the database structure in ways that are evident to any use or program. Furthermore, it provides for multiple user views and hence DBMs can reformat data without human intervention to meet exact input requirements of different users. Lastly, these systems also allow centralized control and maintenance of important data. 
2. In a one-to-one relationship, a row in table A can have no more than one matching row in table B, and vice versa. A one-to-one relationship is created if both of the related columns are primary keys or have unique constraints. However, this type of relationship is not common because most information related in this way would be all in one table. A one-to-many relationship is the most common type of relationship. In this type of relationship, a row in table A can have many matching rows in table B, but a row in table B can have only one matching row in table A. For example, the Publishers and Titles tables have a one-to-many relationship: each publisher produces many titles, but each title comes from only one publisher. A one-to-many relationship is created if only one of the related columns is a primary key or has a unique constraint.
3. Relational databases are so popular because they are more flexible than most other design models. The organization is very straightforward and thus east to learn, understand and implement when compared to other database designs. Besides that, table structure does not restrict processing or queries. It can lodge a wide range of data types and therefore it is not necessary to know in advance the kind of queries, sorting, and searching that will be performed on the database.

Part 2:
4.
a. The Data Type of the LAN_USE field in the Landuse feature class is text since it is left justified and makes use of special characters as for instance dashes and spaces.
b. The Data Type of the LAN_USE field in the LanduseInfo.dbf table is also text.

5.
a. The new fields that have been joined are all the columns that were in the stay alone tables, which are: the general column, the description column, the type column, a square miles column, an acres column, a shape length column, and finally a shape area column.
e. There exists 92236.771795 total acres of open lands in this new feature class. 
f.
g.
























































Friday, October 8, 2010

Lap #7 Map Design & Text

Stefanie Wieschalla
Geog 206

Part 1:
Chapter 7:
1. The information used for dynamic labels come from the attribute table of a specific layer.
2. The most efficient way to show only 3 city names is by using the label tool on the Draw Toolbar. This tool allows you to label features one at a time by clicking them. They can be placed wherever you want and changed individually.
3. Yes, you can manually adjust the position of dynamic labels by moving the mouse pointer over the selected text. The cursor changes to a four-headed arrow. Now you can drag the text to your convenience, releases the mouse button and click an empty are to unselect the text.
4. To adjust graphics the Select Elements tools needs to be selected.
5. There are two types of geodatabase annotation. Standard annotation is geodatabase annotation that does not have a maintained link to any features. The other type, feature-linked annotation, is a special type of geodatabase annotation that is directly linked to features and has special updating behavior when the linked features are updated.
Chapter 18:
1. It is TRUE, you can create your own ArcMap templates.
2. Yes, you can save it as an .mxd file.
3. You can access map templates by starting ArcMap, when you do so a dialog box opens up. Click to use a template option, and then click OK. A new dialog box opens. All the templates that come with ArcGIS can be found here. Another way to access map templates is by directly accessing the folder where the templates are stored. ArcMap custom templates are stored in the /Bin/Templates folder of your ArcGIS installation path.                                           
4. You can do this by right-clicking a layer in the table of contents and click properties. The layer properties dialog box opens. Click the symbology tab. In the show box, click features and then single symbol. Then click on the Symbol field and a symbol selector dialog box opens. Scroll down until you find the star symbol, click on it. Then under the options field you can further change the color to purple and the size of the star to 12. Click OK.
5. You can change the color of a graphic scale by right clicking on a layer. On the context menu, click properties. In the properties dialog box, click the Symbol tab. Click the color square. On the color palette, click the color of your choice. Then click OK and the new color is applied. Another way to simply change color is by right clicking on the symbol of the layer in the table of contents. The color palette opens and you can change the color to the color of your choice.
Chapter 19:
1. Before setting up your map layout, you should always choose the dimensions and the orientation of the map.
2. The scale is different in the data view versus the layout view because when you resize a data frame, ArcMap automatically adjusts the map extent and display scale.
3. The three customization options available for the scale bar are: Scale and Units, Numbers and Marks and Format.
4. It is important to use the 1:1 button because it forces the layout to zoom to its actual size and you can now see the map at the resolution it would have on a printed page. You can no longer see the entire layout.
5. Graphics can be placed either in layout view, along with cartographic elements such as scale bars and north arrows, or in data view so the graphics resize with your data as you change the extent of your map. When you add graphics to your data view and switch to layout view, you will always be able to see these added graphics in layout view. However, you cannot change them, for example move text around. However, when you add graphics in layout view and you then switch to data view, these newly added features will not appear, as for example the north arrow or the scale bar.

Part 2:
Q1. Choropleth maps show numerical data aggregated over predefined regions, such as countries or states, by coloring or shading these regions. Polygons are often based on politically defined feature. This will further yield a display that puts visual emphasis on the largest area units of the map.
Q2. The benefits of layer files are enormous. First of all, a layer references the data stored in geodatabases, coverages, shapefiles, rasters, and so on, rather than actually storing the geographic data. Thus, a layer always reflects the most up-to-date information in your database. A layer will not draw on your map unless you also have access to the data source on which the layer is based. Secondly, layers have a number of properties you can work with and set. You can right-click a layer in the table of contents and click Properties to view the Layer Properties dialog box, where you can set symbology, labeling, drawing rules, and other options. For example, you can specify that streams are drawn with all blue lines, parcels are drawn based on their land-use code, parks are drawn using a green pattern fill and are labeled with the park name, digital elevation is portrayed as a shaded relief, and so on. In addition, other properties include defining the scales at which they can draw, which features to draw from the data source, where that data is located in your database, attribute properties, joins, and relates for working with the tabular information. Lastly, layers can be saved to a file on disk (.lyr) so they can be shared and reused without sharing the entire map. When you save a layer to disk, you save everything about the layer, such as the symbolization and labeling. When you add a layer file to another map, it will draw exactly as it was saved. Others can drop those layers onto their maps without having to know how to access the database or classify the data; this can be helpful when sharing data stored in a multiuser geodatabase with nontechnical staff members. You can share layers over the network as well as e-mail layers, along with the data, to people or enclose the layer within the data's metadata.

Q3. Layer files (layer_name.lyr) include all map display properties for symbolization and labeling. However, layers do not usually contain the actual datasets. Instead, they typically reference a data source that resides in another location. However, a map layer and its data contents can be saved and shared using a layer package. A layer package is saved as a special file (layer_name.lpk) that contains the map layer, a copy of its data, and an XML file that has a brief description of the layer. Layer packages contain all the information necessary for users to put them to work in their own ArcGIS software installation. They are supported in ArcMap, ArcGlobe, and ArcGIS Explorer. Generally, layer packages make it easy to share your map layer display along with the underlying data with other users. For example, users of ArcGIS Explorer can add a new layer to their maps and easily begin using the information that you shared with them as a layer package.

Q4. The population of Long Beach for the year 2000 is 461522.
Q5. The population of Los Angeles for the year 2000 is 3694820.
Q6. There are three types of hyperlinks:
    • Document: When you click a feature with the Hyperlink tool, a document or file will be launched using the application with which that file type is currently associated.
    • URL: When you click a feature with the Hyperlink tool, a Web page will be launched in the default browser.
    • Macro: Visual Basic macros are not supported in ArcReader. The macros will not be available in the published map.

Part3:

Friday, October 1, 2010

Lab #6 Symbolization and Classification

Stefanie Wieschalla

Geog 206

Part 1:
1. Symbology can be influenced by scale given that in some maps, cities can be indicated by circles or as polygons and hence the more detail the scale provides, the bigger will those symbols appear. For example cities in a scale of 1:200,000 represented as a polygon will appear differently and larger than cities in a scale of 1:13,000,000 represented as a circle.  
2. One way to access a layers symbol colors so that they can be changed is by clicking the symbol for a particular layer in the table of contents. The Symbol Selector dialog box opens. The options frame on the right allows you now to pick colors. Another way to access a layers symbol colors is by simply right clicking on the layer, choosing the layers properties option and then, when the properties dialog box opens, you need to click on the symbology tab. Now you can change color.
3. One would access the graduated symbols classification option by double clicking the layer name of one’s choice to open the layer properties dialog box. Then one needs to click on the symbology tab. In the show box, click Quantities. In the Quantities column one can find the option “graduated symbols”.
4. Five other symbology styles (in addition to ‘Conservation’) that are available to customize your features are for example: Crime Analysis, Caves, Survey, Weather and Forestry.
5. One could permanently save layer symbology for a later use by right clicking the layer of one’s choice in the table of contents and then click save as layer file. In the save layer dialog box, navigate to the folder you were working with, accept the default name and then click save.
6. Pyramids can help raster data display faster by retrieving only the data at a specified resolution that is required for the display. With pyramids, a lower-resolution copy of the data displays quickly when drawing the entire dataset. As you zoom in, levels with finer resolutions are drawn; performance is maintained because you're drawing successively smaller areas. The database server chooses the most appropriate pyramid level automatically based on the user's display scale.
7. One would quickly and temporarily change a layer name to aid display in the Table of Contents by clicking once the layer you want to rename, wait a moment and then click again. Now the name is highlighted and the layer is ready to be renamed.
8. Dividing one attribute by another to find the ration between them is referred to as normalization. It is mostly used to calculate density.
9. Dot density maps could be misleading because the dot placement is random within each country and hence the arrangement of dots on a map will not match the graphic exactly. This is especially confusing when focusing on small areas.  
Part2:

Friday, September 24, 2010

Lab #5 Data Source and Management

Stefanie Wieschalla
Geog 206

Part 1:
1. The advantages of using digital spatial data are that it is possible to directly transfer them to other digital devices and GIS systems, where they may be further processed. Digital formats provide a more efficient processing of data. Besides that, it is the easiest, quickest and least expensive source of spatial information. Disadvantages are that the data may not be in the format you want it to be so you need to convert it. Also, global data sets do not really exist because only few governments collect spatial data in the same way or with the same attributes. Data reduction or documentation methods may be different across national boundaries. Furthermore, digital spatial data is only partly available to the public and quality is not always good.
2. The most important question to ask before using already-developed spatial data is regarding its source. Is the data accurate? Who produced it? What are the source materials and what do they contain? Furthermore it is significant to ask if the data is free and if the data matches your theme and scale. Is it appropriate?
3. DOQs differ from regular photographs because they are actually scanned photographic images that have been corrected for distortions due to camera tilt, terrain displacement, and other factors. These corrections yield photographers that are planimetrically correct are very similar to large-scale topographic maps.
4. Digital Raster Graphics (DLGs) have been mostly produced from USGA series maps and most features on these maps have been recorded in DLGs so there is a close correspondence between DLGs and USGS series maps. Hence DLGs are vector representations of most features portrayed on USGS national series maps. They are available by map series designation, for example 1:2 million DLGs are available that contain the data included on 1:2 million scale maps. DLGs for 1:100,000 and 1:24,000 scale maps are also available. The extent of an individual DLG typically corresponds to the extent of the map series.  The materials contain boundaries, hydrography, roads and hypsography.
The U.S. Census Bureau produces and maintains database systems to support the national census. This system is known as the Census Tiger system. It links geographic entities to census statistical data on population size, age, income, health, and other factors. The units are typically polygons classified by roads, streams, political boundaries, or other features. These source material files define line, landmark and polygon features in a topologically integrated manner. Polygon features for example include census tabulation areas such as census block groups and tracts. These files contain information to identify street address labels.
The National Land Cover data has been produced by the USGS and other agencies and organizations to meet a wide variety of spatial needs. The data source materials are based on the interpretation of t1970s and early 1800s aerial photographs. Photographs were taken at a range of scales and they contain a variety of land cover features as fine grain features, including road corridors and small lakes.
5. NED can generally be seen as an improvement over previous sources, in particular the DEM because it is a high resolution, seamless data source. Previous high resolution DEM data from the USGS were provided only over small areas with fixed boundaries. It was very time consuming to assemble these titles into a mosaic, when DEMs where required for large areas. Artifacts such as gaps or discontinuities were sometimes introduced at edges, and tiles were sometimes produced using different datums, projections or units. A seamless NED data set avoids these problems. Furthermore, NED is a progress in quality of slope, aspect, shaded-relief, and drainage information that may be derived from the elevation data.

Part 2:
2.
a.) Basemap and Hydrology are the names of the feature datasets in the geodatabase.
b.) NHDFlowline, NHDPoint, NHDWaterbody and Watersheds are the names of the feature classes in the hydrology dataset.
c.) NHDFlowline is a polyline layer. NHDPoint is a point layer. NHDWaterbody and Watersheds are both polygon layers.
3.
a.) topoq24.shp is a vector layer.
b.) The GIS Data format of topoq24.shp is a shapefile.
c.) Yes, there is metadata associated with topoq24.shp.
d.) The GIS Data format of NHDFlowline is the ArcGIS Geodatabase.
e.) Yes, there is metadata associated with NHDFlowline.
f.) Three examples of the keywords used to describe the NHDFlowline are: Hydrography, Stream and Lake.
g.) The NHDFlowline layer was created by: Earth Science Information Center, U.S. Geological Survey.4.
a.) Yes, there is still metadata associated with the layer (NHDFlowline.shp).
6.
b.) The USGS_QD-ID for Canoga park is 34118-B5.
7. The DOQQ is black and white.
8. Screenshot of CSUN campus


CSUN Campus
 10. Screenshot of expanded folder/file structure in ArcCatalog


12.
a.) The lacounty_lu01.shp layer has now a red exclamation point next to the grayed-out check box.

Monday, September 20, 2010

Lap #4 Working with Map Projections

Geog 206
Stefanie Wieschalla

Part 1: Map projections

Part 2: Significance of Map Projection

One might wonder why people need maps if a good globe can offer the most accurate representation of the earth. However, what is often forgotten is that a globe is actually not useful for many of the purposes for which we need maps. Map projections are necessary for creating maps thus maps could not exits without map projections. They permit us to represent some or the earth’s entire surface, at a large range of scales, on a flat, easily movable surface like for example, a sheet of paper. Map projections are more compact and easier to store, they can facilitate measuring properties of the terrain being mapped and they can show larger portions of the earth's surface at once. Besides that, they are cheaper to produce plus transport and they can further be applied to digital map data, which can be represented on a computer display. These useful traits of maps motivate the development of map projections. Today there are surely hundreds of different map projections to choose from. Each of them has its own strengths and corresponding weaknesses given that the process of transmitting information from the earth to a map causes every projection to distort at least somehow. Generally, distortion takes place in shape, area, distance and/or direction. Hence, every projection has its own advantages and disadvantages. There is simply no best projection because the appropriate projection for any given map depends on the scale of the map plus the function for which it will be utilized. For example, a projection could have intolerable distortions when used to map the entire United States, but may actually be a great alternative for a large-scale detailed map of California. Additionally, the properties of a map projection can also affect some of the design attributes of a map. Some projections are for instance clearly good for small areas, but some are not. It is also important to keep in mind that there are many ways to categorize the large variety of map projections. One of the most common classifications is by distortion characteristics. One need to question which properties of the earth does the projection maintain and which does it distort. A projection that maintains precise relative sizes is referred to as an equal area. Equal area projections are used for maps that indicate distributions or other occurrences where representing area accurately is significant. However, shape, distance and direction are distorted, especially when getting closer to the poles. Examples of the maps I used are the Gall Stereographic Projection and the Bonne Projection, which both indicate that the approximate distance between Washington, D.C. and Baghdad is about 5,970 miles. Now, a projection that preserves angular relationships and true shapes over small areas is called a conformal projection. These projections are generally utilized for navigational charts since angular relationships are important. Yet, distortion of area and direction increases away from the equator and is extreme in polar regions. Examples that I used for the assignment are the Mercator projection and the Eckert 1 projection. The estimated distance from Washington, D.C. to Baghdad varies in both examples. The Mercator projection approximates the distance to be about 8,389 miles, where the Eckert 1 projection indicates it only as 6,161 miles. The last two map projections that I choose where examples of equidistant projections, which maintain accurate distances from the center of the projection or along given lines. The projections are used for radio and seismic mapping and for navigation. However, shape, area and direction are, even though constant along any given parallel, quite distorted when the distance from the standard parallels increases. The examples I applied are the Equidistant Conic and the Equidistant Cylindrical projection. The estimated distance from Washington, D.C. to Baghdad varies in both examples again. Where the Cylindrical estimates to distance to be only 4,212 miles, the Conic indicates the distance to be around 6,277 miles. Initially, a map projection may also combine several of these characteristics or could be a compromise that distorts all the properties of shape, area, distance and direction within some tolerable limit. Even though not needed for the map exercise, a good example would be the Robinson projection, which is often used for world maps.

Part 3: Coordinate Systems & Projections Worksheet

1. An ellipsoid is a mathematical surface that is characterized by rotating an ellipse around its minor/polar axis. The ellipsoid estimates the surface of the earth without “topographic undulations”. The ellipsoid differs from a sphere given that it is slightly flattened at the poles.
2. The imaginary network of intersecting latitude and longitude lines on the earth’s surface is called a “Geographic Coordinate System”.
3. In contrast to the geographic North Pole that is located at the northern pole of the earth’s axis of rotation, the Magnetic North is the direction where a compass points to. It is important to realize that they are not at the same place at any point in time.
4. Datums are important because they tell one the latitudes and longitudes of a set of points on an ellipsoid, in order to determine surface locations. Datums are developed by determining a set of points by which all other latitudes and longitudes are established. One can determine these points through “geodetic surveys and monument points”.
5. A map projection is the alteration of coordinate positions from the earth’s curved surface onto a flat map. Points are “projected” from the earth surface and onto the map surface.
6. A developable (flat) surface is a geometric shape onto which the earth surface locations are projected. Common examples would be cones, cylinders, and planes.
7. d.) Lines of Latitude run north-south, converge at the poles, and mark angular distance east and west of the prime meridian.
8. a.) Clarke 1866 is now regarded as the best model of the earth for the region of North America.
9. For developing and analyzing spatial data when mapping countries or larger area it would be appropriate to use the Universal Transverse Mercator coordinate system given that it is a global coordinate system and it divides the earth into zones, which are each 60 degrees of longitude wide. Furthermore, the UTM zones have a large width that is necessary to accommodate large area analyses since all regions for an analysis are must be in the same coordinate system if they are to be analyzed together.
10. A great circle distance is a distance measured on the ellipsoid and in a plane through the earth’s center.
 

Monday, September 13, 2010

Lab #3: Data Formats & Models

Stefanie Wieschalla
Geog 206


1. A data model is a set of regulations utilized in order to illustrate and represent features of the “real world” in a computer. The two most frequently used data models are Geometric/Geospatial Data and Attribute Data models.

2. Topology is the analysis of geometric properties, which do not alter even when the forms are twisted, stretched or experience related geometric transformations. Furthermore, it confines and records the relationship between features. Hence topology is important because it is new and more efficient, especially regarding processing, then for example Spaghetti Models, which are often times prone to redundancy, unwanted overlap and/or inaccurate analyses.

3. The raster data model would definitely be best for representing hillside slope given that it provides a more accurate representation of continuous data. Hillside slopes are surely an example of continuous data because one can find them in many different regions of the world.

4. The relationship between spatial detail and cell dimension with regard to raster models is: the bigger the cell, the lower the resolution and the less detail one can resolve. Therefore, cell resolution relates to its size on the ground, where every grid cell holds one value, even if it is in fact empty.

5. The four types of attribute data are first nominal data, which is descriptive and/or categorical data as for example race/ethnicity, which can be divided between Caucasian, African-American, Asian, ect. Then there is ordinal data that is ranked/ordered like it is often times in surveys, where 1=Strongly disagree; 2=Disagree; 3=Neutral; 4=Agree; 5=Strongly agree. Third, there is the interval data, which is ordered, yet with absolute differences in magnitude and arbitrary zero. A good example would be temperature in degrees Fahrenheit. Lastly, there is ratio that is ordered data, with absolute differences in magnitude and absolute zero as for instance a person’s weight.

6. Two types of vector data file formats are: shapefile and coverages.

7. Two types of raster data file formats are: grids and images (tiff, jpeg, etc.).

8. One can do all of the following in ArcCatalog EXCEPT, c.) Select features.

9. Yes, the World.mdb geodatabase contains four feature classes.

10. The names of the feature classes that are contained in the World.mdb geodatabase are: cities, countries, disapp_ area and world30.

11. The flight_path.lyr layers file references spatial data.

12. One way to add data to ArcMap is to drag it from ArcCatalog. When the data is there, one can look at it as a map display and table of contents. The other way to add date to an ArcMap document, when ArcCatalog is not open, is to use the Add Data button in ArcMap, which is located on the Standard toolbar.

13. There are 699 records in the dissap_area feature class. One can determine this by looking at the Attributes category under the dissap_area feature class in ArcCataalog.

14.

Friday, September 3, 2010

Lab #2: ArcGIS & ArcMap

Stefanie Wieschalla
Geog 206



1.) There are four types of software products included in ArcGIS and these are Desktop GIS, Server GIS, Online GIS, ESRIData and Mobile GIS. Most of the time, in this course, we will be using Desktop GIS.

2.) It would be better to perform most of the data analysis and layer symbolization in data view because one can chose the “all-purpose view” for exploring, displaying and querying, but at the same time, one can focus on data in a single frame. However, the layout view serves simply for arranging map elements for printing and performing normal “data view” functions.

3.) There is first of all, the “What’s This” tool help that one can access by pressing Shift+F1 or to obtain further help, there is ArcGIS Desktop Help, which one can access by simply pushing the F1 button.

4.) Attributes are linked to geographic features in an attribute table via a unique identifier.

5.) When working in ArcMap, one uses a file called a “map document” or “mxd”.

6.) One way to zoom in/out on a map is by simply rolling the mouse wheel back and forth. The other way is to go to the toolbar and click on the zoom in or out tool and then click on a point you want to zoom in or out to.

7.) In the context menu of a layer, one can choose from a variety of different operations. One of them would be the “copy” option, where one can copy for instance a layer and then paste it somewhere else. Another example would be the “open attribute table” option, which consists of data associated with the geographic features or shapes. The last example, I want to point out is the “properties” selection, where one can change names and other features.

8.) If the check box next to a layer in the TOC is grayed-out, this means that the layer’s visibility depends on the map’s display scale. To resolve the issue, one would simply zoom in and then the layer will become visible.

9.) Small scale maps are actually characterizing large areas, like the entire world. The scale might be indicated as 1:400,000,000. In other words, large areas that are displayed in a map create small scale maps. Yet, large scale maps are representing a small area as for example the CSUN campus and could be illustrated by a scale of 1:100. Therefore, the larger the scale, the nearer features are to their original size.

10.) Features have shape and size and hence geographic objects have a huge selection of shapes. All of them can be represented as one of three geometrical forms, which are a polygon, a line or a point. A good example would be points that are generally used for cities and/or schools given that they are too small to be polygons, which would be countries or rivers. In contrast to for example countries, things as rainfall, elevation, slope, temperature and wind speed have no clear shape. Consequently, surfaces have measurable values for any specific location. The most well known surface is a raster, a matrix of identically sized square cells, where every cell stands for a unit of surface land and contains a measured or estimated value for that site.

11.) With GIS one cannot d) store project data.

12.) The minimum elevation value is 0 meters and can be found in New Orleans, USA. The maximum elevation value of the cities Earhart visited is 1045 meters and is located in Tucson, USA. I determined these values by clicking on the Identify tool on the Tools toolbar. When one clicks the tool, the Identify window opens. Then I went back to the map and clicked on the cities. The Identify windows show you the country and various other factors about a particular city as the elevation.

13.) The approximate distance from Dakar to Assab is 4,294.780241 miles, which I determined by clicking on the Measure tool on the Tools toolbar that opens the Measure window, which then gives you the opportunity to choose from the Units-drop-down arrow, point to Distance, to click on miles. Then I moved the mouse pointer over the city of Dakar, placed the crosshair and began to draw a line all the way to Assab. I ended the line by double clicking on it. The length of the line is now displayed in the Measure window. Another way of determining the approximate distance from Dakar to Assab, would be to open the attribute table of the Flight Path and then manually calculate the numbers that consists with the route that goes from Dakar to Assab.

14.) One way to figure out the names of cities shown on a map is to click on the Select Elements tool in the Tools toolbar and then move the cursor over the particular city you want to know the name of. The city’s name displays as a map tip. A different way would be to make the names of the cities visible at all times. One has to go to the Table of Contents, right click the layer that contains the cities and then click on label features. Now the name of each city appears next to the map feature.

15.)


Monday, August 30, 2010

Lap #1b: GIS on the Web

Stefanie Wieschalla
Geog 206


1a)

GIS Definition one from: http://www.webopedia.com/TERM/G/GIS.html

Short for Geographic Information Systems, tools used to gather, transform, manipulate, analyze, and produce information related to the surface of the Earth. This data may exist as maps, 3D virtual models, tables, and/or lists.

GISs can be as complex as whole systems that use dedicated databases and workstations hooked up to a network, or as simple as "off-the-shelf" desktop software.

GISs play an important role in many organizations. For instance, police and fire departments may use GISs to locate landmarks and hazards, plot destinations, and design emergency routes. GISs may also be used by governments, research institutes or any other body that can't possibly handle the task of manually processing large amounts of geographical data.



GIS Definition two from: http://gps.about.com/od/glossary/g/GIS.htm

A Geographic Information System, or GIS, integrates data, hardware, software and GPS to assist in the analysis and display of geographically referenced information.

GIS is a general term that refers to any scientific effort to integrate data to help researchers visualize, analyze, and explore geographically referenced information. For example, GIS is helping researchers measure the speed of glacier melting in Greenland and Antarctica. GIS can assist in the analysis of small-scale and localized data, as well, such as development trends, or watershed analysis.

The field of GIS has advanced rapidly in recent years, with the availability of rapidly increasing computer power, development of software, and proliferation of inexpensive GPS devices.

GIS is frequently used to create maps that illustrate hidden data. For examples, visit Geodata.gov.



GIS Definition three from: http://www.nwgis.com/gisdefn.htm

GIS (Geographic Information Systems) is a system of hardware and software used for storage, retrieval, mapping, and analysis of geographic data. Practitioners also regard the total GIS as including the operating personnel and the data that go into the system. Spatial features are stored in a coordinate system (latitude/longitude, state plane, UTM, etc.), which references a particular place on the earth. Descriptive attributes in tabular form are associated with spatial features. Spatial data and associated attributes in the same coordinate system can then be layered together for mapping and analysis. GIS can be used for scientific investigations, resource management, and development planning.

GIS differs from CAD and other graphical computer applications in that all spatial data is geographically referenced to a map projection in an earth coordinate system. For the most part, spatial data can be "re-projected" from one coordinate system into another, thus data from various sources can be brought together into a common database and integrated using GIS software. Boundaries of spatial features should "register" or align properly when re-projected into the same coordinate system. Another property of a GIS database is that it has "topology," which defines the spatial relationships between features. The fundamental components of spatial data in a GIS are points, lines (arcs), and polygons. When topological relationships exist, you can perform analyses, such as modeling the flow through connecting lines in a network, combining adjacent polygons that have similar characteristics, and overlaying geographic features.



1b)

All definitions discuss GIS somehow as a computer-based system to support the gathering, preservation, storage, retrieval, analysis, output, and distribution of spatial data and information.

1c)

The main difference lies in the amount of information’s provided. Where some definitions are right to the point, others are giving detailed information’s about GIS as an information system as well as an approach to science. However, some definitions contain further unique phrases and descriptions.

1d)

As a result, one can consider the field of GIS as one with many different aspects that can be used in many different areas of life.



2.)



City Space

Overall, the map demonstrates the Boston Metro Area. The color red illustrates industrial land; the pink coloring refers to “Other” that is currently used land and the grey area shows all other values. The map serves as verification that land that was used to be utilized by industrial development is in fact empty space today and hence can be used for redevelopment projects. Therefore, there is in fact space to live or build in the city of Boston, much of it is even close to business district and connected to transportation.


Example two from: http://libraries.mit.edu/gis/examples/examples.html

Pure Water Access

The map illustrates the northern land area of the country Ghana. Different colors represent different types of water sources used by household in the three regions of northern Ghana. The dominant coloring is yellow, which refers to “Dugout”. This map is one of a few others related to planning access to safe water in order to encourage the promotion and sale of household water, treatment and secure storage technologies.


Example three from: http://libraries.mit.edu/gis/examples/examples.html

Sea Surface Temperatures
The map generally indicates the locations of deep sea sediments cores in order to reconstruct sea surface temperatures over the last 10,000 years. The lighter blue coloring demonstrates high elevation (1838), where the darker blue color shows low elevation (- 7887). The red border lines show the north and south Gulf Stream boundaries given that the Gulf Stream is mainly in control of the temperatures in this region. Moreover, the green dotes indicate the sediment core locations.

3.)


Differences between maps (Cartography) and GIS:

• In general, output from GIS does not have to be a map.

• Text output may be more important than a map for analysis reporting.

• Many GIS are designed with poor map output capabilities.

• The main differences between a GIS and a mapping system are in their functional components.

A GIS contains these four components:  a. Input   b. Database    c. Analysis    d. Output
In contrast, a mapping system can be described in three components:  a. Input   b. Map design   c. Output


Similarities between maps (Cartography) and GIS:


• Much GIS output is in the form of hard copy maps or graphic displays.

• Design of graphic output is critical to effective use of GIS analysis.

• Maps are the main source of data for GIS and GIS has roots in the analysis of information on maps.

• Many standard GIS operations were conceived and executed where possible on analogue maps.

• Many people use GIS to make maps.

• Both cartography and GIS however use map/data layers.